Communication: Adjusting charge transfer state energies for configuration interaction singles: without any parameterization and with minimal cost.
نویسندگان
چکیده
In a recent article, we showed that configuration interaction singles (CIS) has a systematic bias against charge-transfer (CT) states: CT vertical excitation energies are consistently too high (by 1-2 eV) as compared with non-CT energies [J. E. Subotnik, J. Chem. Phys. 137, 071104 (2011)]. We now show that this CIS error can be corrected approximately by performing a single Newton-Raphson step to reoptimize orbitals, thus establishing a new set of orbitals which better balances ground and excited state energies. The computational cost of this correction is exactly that of one coupled-perturbed Hartree-Fock calculation, which is effectively the cost of the CIS calculation itself. In other words, for twice the computational cost of a standard CIS calculation, or roughly the same cost as a linear-response time-dependent Hartree-Fock calculation, one can achieve a balanced, size-consistent description of CT versus non-CT energies, ideally with the accuracy of a much more expensive doubles CIS(D) calculation.
منابع مشابه
Communication: configuration interaction singles has a large systematic bias against charge-transfer states.
We show that standard configuration interaction singles (CIS) has a systematic bias against charge-transfer (CT) states, wherein the computed vertical excitation energies for CT states are disproportionately too high (by >1 eV) as compared with non-CT states. We demonstrate this bias empirically for a set of chemical problems with both inter- and intra-molecular electron transfer, and then, for...
متن کاملDiabatic couplings for charge recombination via Boys localization and spin-flip configuration interaction singles.
We describe a straightforward technique for obtaining diabatic couplings applicable to charge transfer from or charge recombination to the electronic ground state. Our method is nearly black box, requiring minimal chemical intuition from the user, and merges two well-established approaches in electronic structure theory: first, smooth and balanced adiabatic states are generated using spin-flip-...
متن کاملDFT study of the intermolecular interaction of 3,4-dinitropyrazole (DNP) and H2O
In the present work, the sensitivity to the moisture (hygroscopisity) is studied for 3,4-dinitropyrazole (DNP) as a famous energetic molecule. All of the DNP-H2O complex systems (1-3) as well as individual molecules were optimized and bond lengths, bond angles, dihedral angles, charge transfer and stability via NBO analysis, corrected interaction energies with ZPE + BSSE and hydrogen bonds anal...
متن کاملThe Variationally Orbital-Adapted Configuration Interaction Singles (VOA-CIS) Approach to Electronically Excited States.
For chemically accurate excited state energies, one is forced to include electron-electron correlation at a level of theory significantly higher than configuration interaction singles (CIS). Post-CIS corrections do exist, but most often, if they are computationally inexpensive, these methods rely on perturbation theory. At the same time, inexpensive variational post-CIS methods would be ideal s...
متن کاملStudies on the Charge-Transfer Interaction Between Tamoxifen Citrate and Chloranilic Acid
The complex formed as a consequence of the interaction between the electron-acceptor P-chloranilic acid and an electron donor tamoxifen citrate was employed in the assay of the drug in pure powder and tablets. Chloranilic acid was found to form a charge-transfer complex in a 1:1 stoichiometric ratio, with tamoxifen citrate. The wavelength of maximum absorption for the complex was found to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 136 16 شماره
صفحات -
تاریخ انتشار 2012